Global Existence of Classical Solutions to a Cancer Invasion Model

نویسندگان

  • Khadijeh Baghaei
  • Mohammad Bagher Ghaemi
  • Mahmoud Hesaaraki
چکیده

This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue. The model consists of three reactiondiffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. The equation for cell density includes two bounded nonlinear density-dependent chemotactic and haptotactic sensitivity functions. In the absence of logistic damping, we prove the global existence of a unique classical solution to this model by some delicate a priori estimate techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source

a r t i c l e i n f o a b s t r a c t This paper deals with a mathematical model of cancer invasion of tissue. The model consists of a system of reaction–diffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. In two space dimensions, we prove global existence and uniqueness of classical solutions to this model ...

متن کامل

Mathematical Modelling of Cancer Invasion of Tissue: the Role and Effect of Nonlocal Interactions

In this paper we consider a mathematical model of cancer cell invasion of tissue (extracellular matrix). Two crucial components of tissue invasion are (i) cancer cell proliferation, and (ii) over-expression and secretion of proteolytic enzymes by the cancer cells. The proteolytic enzymes are responsible for the degradation of the tissue, enabling the proliferating cancer cells to actively invad...

متن کامل

Existence Results for a Dirichlet Quasilinear Elliptic Problem

In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.

متن کامل

Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model.

This paper studies the global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with appropriate initial and mixed boundary conditions. Under some practicable regularity criteria on diffusion item and nonlinearity, we establish the local existence and uniqueness of classical solutions based on a contraction mapping. This local solution can be conti...

متن کامل

Mathematical analysis of tumour invasion with proliferation model and simulations

In this paper it is shown that the global existence in time and asymptotic profile of the solution of a mathematical model of tumour invasion with proliferation proposed by Chaplain et al. For this purpose we consider a related nonlinear evolution equation with strong dissipation and proliferation corresponding to our mathematical model and the initial Neumann-boundary value problem for the evo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013